Short Communication # Crystal Structure of [Ni(CTH)(NCS)₂] with Linearly and **Nonlinearly Coordinated Isothiocyanate Groups** Enrique Colacio, a Jose M. Dominquez-Vera, Albert Escuer, Raikko Kivekäs, Enrique Colacio, Albert Escuer, Alb Martti Klinga^c and Antonio Romerosa^d ^a Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain, ^bDepartment of Inorganic Chemistry, University of Barcelona, Diagonal 647, 08028 Barcelona, Spain, clnorganic Chemistry Laboratory, Box 55, FIN-00014 University of Helsinki, Finland and ^dDepartment of Inorganic Chemistry, University of Almería, 04071 Almería, Spain > Colacio, E., Dominquez-Vera, J. M., Escuer, A., Kivekäs, R., Klinga, M. and Romerosa, A., 1996. Crystal Structure of [Ni(CTH)(NCS)₂] with Linearly and Nonlinearly Coordinated Isothiocyanate Groups. - Acta Chem. Scand. 50: 178 -180 © Acta Chemica Scandinavica 1996. One of the main challenges in the field of magnetic molecular materials is the design and synthesis of molecularbased ferromagnets. A useful strategy for achieving such ferromagnets has been to build tridimensional (3D) polymetallic systems in which all the interactions between nearest neighbours are ferromagnetic. 1 A good example of this is the bimetallic Cr^{III}-Ni^{II} polymer reported by Verdaguer et al., in which the orthogonality of the magnetic orbitals centred on CrIII and NiII ions gives rise to ferromagnetic interaction.² In an attempt to prepare 3D heterobimetallic Ni-Cr compounds of this type, we have used the complexes [Cr(NCS)₆]K₃ as precursor and [Ni(CTH)](ClO₄)₂ with meso-CTH as counterpart (CTH = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazacyclotetradecane). The former contains six potential donor atoms for other metal ions, whereas in the latter the Ni^{II} ion has two empty axial coordination sites. However, when we allowed water solutions of [Cr(NCS)₆]K₃ and [Ni(CTH)](ClO₄)₂ to react by slow diffusion, we obtained pink crystals of a compound with empirical formula [Ni(CTH)(NCS)₂]. This paper deals with the synthesis and crystal structure of this new complex, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazacyclo-tetradecane-N,N',N",N"'-trans-bis(isothiocyanato-N)nickel(III). ## Results and discussion The structure contains two discrete, non-equivalent monomeric $[Ni(C_{16}H_{36}N_4)(NCS)_2]$ units (Fig. 1). In both units the metal ion occupies the inversion centre and has a distorted octahedral NiN₆ environment, with Ni-N distances 2.081(6)-2.139(6) Å (Fig. 2). Four N atoms of the macrocyclic CTH ligands are chelated to the nickel(II) Fig. 1. Structural view and numbering scheme for [Ni(CTH)(NCS)₂]. atom in a planar NiN4 arrangement, and the octahedral coordination is completed by the N atoms of two NCS ions in trans position. The two [Ni(CTH)]²⁺ moieties are closely similar: the corresponding Ni-N distances and N-Ni-N angles are almost identical, bond lengths and Fig. 2. Table 1. Crystal data and structure determination summary for [Ni(CTH)(NCS)₂]. | 10. [1.11/0.11/1.11.01/2.] | | |--------------------------------|---| | Compound | [Ni(CTH)(NCS) ₂] | | Formula | C ₁₈ H ₃₆ N ₆ NiS ₂ | | Formula mass | 459.36 | | Space group | P 1 (No. 2) | | Wavelength, (MoKα)/Å | 0.71073 | | Crystal system | Triclinic | | Temperature/K | 193(2) | | a/Å | 8.049(2) | | b/Å | 9.134(2) | | c/Å | 15.488(3) | | α/° | 94.22(3) | | R/° | 97.53(3) | | γ/° | 92.97(3) | | γ/°
V /ų | 1123.6(4) | | Z | 2 | | F(000) | 492 | | $D_{\rm c}/{\rm g~cm}^{-3}$ | 1.358 | | μ/cm ⁻¹ | 10.65 | | Crystal size/mm | 0.15×0.12×0.10 | | Scan mode | $\omega/2\theta$ | | $\theta_{\sf max}/^{\circ}$ | 26.50 | | Weights | $[\sigma^2(F_0^2) + (0.0991P)^2]^{-1}$ | | | where $P = (F_0^2 + 2F_0^2)/3$ | | No. of independent reflections | 3878 | | No. of observed reflections | 2279 $[F > 4\sigma(F)]$ | | No. of variables | 250 | | R | 7.59 | | wR | 17.49 | angles in the CTH ligands are not markedly different, the five-membered chelate rings assume a *gauche* conformation and the six-membered rings adopt a *chair* conformation. The two independent isothiocyanate ions are practically linear, and bond lengths of the ions do not differ significantly. However, there is a difference in the axial orientation of the *trans*-isothiocyanato-N ions. In unit 2 the NCS-Ni-NCS arrangement is almost linear and perpendicular to the NiN₄ plane, with an Ni(2)-N(2)-C(2) angle of 174.5(6)°, whereas in unit 1 the Ni(1)-N(1)-C(1) angle is 143.1(6)° and the whole NCS is bent away from the axial position, thus avoiding close contact with the surrounding molecules. There are no contact distances shorter than 3.5 Å between NCS ions and the non-H atoms of neighbouring molecules. Thus NCS ions do not participate in intermolecular hydrogen-bond formation, and the monomers are bound together only by van der Waals forces. A difference in inclination of the two NCS groups has been observed previously in this type of complex. The complex [Ni(as-Et₂en)₂(NCS)₂]³ (where as-Et₂en is N,N-diethylethylendiamine), which also contains two non-equivalent monomeric units, exhibits Ni-N-CS angles of 162.8(2) and 171.3(3)°. Likewise, in [Ni(L³)(NCS)₂]⁴ (with L³ standing for 1,4,8,11-tetraazacyclotetradecane), the inclination of the NCS groups ranges from 156 to 168° for the four crystallographically independent molecules. In these cases, the difference in the Ni-N-CS angles may be a consequence of intermolecular interactions. However, in our case, where there are no close Table 2. Positional parameters ($\times 10^4$) and equivalent isotropic thermal parameters (in $\mathring{A}^2 \times 10^3$) for [Ni(CTH) (NCS)₂]. | Atom | x/a | y/b | z/c | <i>U</i> (eq) | |-------|----------|----------|------------------|---------------| | Ni(1) | 5000 | 5000 | 0 | 26(1) | | Ni(2) | 5000 | 10000 | 5000 | 30(1) | | S(1) | 1985(3) | 8000(3) | - 1843(2) | 57(1) | | S(2) | 7149(3) | 6117(2) | 3167(1) | 45(1) | | N(1) | 2869(8) | 5798(7) | -756(4) | 40(2) | | N(2) | 6095(8) | 8375(7) | 4243(4) | 39(2) | | N(10) | 4110(7) | 5557(6) | 1176(4) | 33(1) | | N(14) | 4043(7) | 2788(6) | - 111(4) | 28(1) | | N(20) | 3235(7) | 10368(7) | 3944(4) | 35(1) | | N(24) | 3422(7) | 8479(7) | 5521(4) | 36(1) | | C(1) | 2467(9) | 6680(8) | - 1215(5) | 35(2) | | C(2) | 6562(9) | 7457(8) | 3798(5) | 32(2) | | C(11) | 2476(8) | 4810(8) | 1260(5) | 33(2) | | C(12) | 2611(9) | 3152(8) | 1181(4) | 33(2) | | C(13) | 2506(9) | 2331(7) | 276(5) | 30(2) | | C(15) | 4112(9) | 2218(7) | - 1021(5) | 34(2) | | C(16) | 5817(7) | 2818(6) | - 1286(4) | 37(2) | | C(17) | 1898(7) | 5286(6) | 2127(4) | 56(2) | | C(18) | 2526(10) | 680(9) | 417(5) | 48(2) | | C(19) | 917(9) | 2635(9) | -315(5) | 41(2) | | C(21) | 2160(9) | 9058(8) | 3571(4) | 33(2) | | C(22) | 1176(9) | 8451(8) | 4265(5) | 38(2) | | C(23) | 2026(9) | 7522(8) | 4970(5) | 36(2) | | C(25) | 4562(9) | 7721(8) | 6157(5) | 41(2) | | C(26) | 5803(10) | 8875(9) | 6669(5) | 49(2) | | C(27) | 926(10) | 9406(9) | 2791(5) | 46(2) | | C(28) | 715(9) | 7085(9) | 5538(5) | 46(2) | | C(29) | 2683(10) | 6146(8) | 4552(5) | 44(2) | contacts between molecules, the source of the difference is not apparent. In the title compound with *meso*-CTH and in [Cu-(ClO₄)(μ -L)Ni(CTH)](ClO₄)·H₂O with *rac*-CTH (H₂L is α, ω -bis((1,3-dimethyl-5-nitrosouracil-6-yl)amino)propane),⁵ the macrocycle acts as a tetradentate ligand in an octahedral environment; however, the geometry of the ligand differs in the two compounds. As mentioned above, in the title compound the four coordinating N atoms of CTH in 1 and 2 are exactly in the plane owing to symmetry, leading to a *trans* occupation of thiocyanates. Table 3. Bond lengths (in Å) for [Ni(CTH)(NCS)₂].^a | Ni(1)-N(10) | 2.082(5) | N(20)-C(26)2 | 1.487(9) | |-------------------|----------|--------------|-----------| | Ni(1)-N(14) | 2.111(5) | N(24)-C(25) | 1.490(9) | | Ni(1)-N(1) | 2.139(6) | N(24)-C(23) | 1.514(9) | | Ni(2)-N(20) | 2.081(6) | C(11)-C(17) | 1.519(8) | | Ni(2)-N(24) | 2.109(6) | C(11)-C(12) | 1.521(9) | | Ni(2)N(2) | 2.123(6) | C(12)-C(13) | 1.530(9) | | S(1)-C(1) | 1.635(8) | C(13)-C(19) | 1.523(10) | | S(2)-C(2) | 1.637(8) | C(13)-C(18) | 1.539(9) | | N(1)-C(1) | 1.145(9) | C(15)-C(16) | 1.567(8) | | N(2)-C(2) | 1.156(9) | C(21)-C(27) | 1.523(10) | | N(10)-C(11) | 1.475(9) | C(21)-C(22) | 1.534(10) | | $N(10)-C(16)^{1}$ | 1.479(8) | C(22)-C(23) | 1.544(10) | | N(14)-C(15) | 1.474(8) | C(23)-C(28) | 1.516(10) | | N(14)-C(13) | 1.498(8) | C(23)-C(29) | 1.522(10) | | N(20)-C(21) | 1.475(9) | C(25)-C(26) | 1.516(10) | | | | | | ^a Symmetry transformations used to generate equivalent atoms: $^{1}-x+1$, -y+1, -z; $^{2}-x+1$, -y+2, -z+1. Table 4. Bond angles (in °) for [Ni(CTH)(NCS)₂].^a | N(10)-Ni(1)-N(14) | 95.2(2) | C(15)-N(14)-Ni(1) | 106.4(4) | N(14)-C(13)-C(18) | 109.0(5) | |---------------------------------|----------|---------------------------------|----------|---------------------------------|----------| | N(10)-Ni(1)-N(14) ¹ | 84.8(2) | C(13)-N(14)-Ni(1) | 121.8(4) | C(19)-C(13)-C(18) | 110.1(6) | | N(10)–Ni(1)–N(1) ¹ | 87.2(2) | $C(21)-N(20)-C(26)^2$ | 116.3(6) | C(12)-C(13)-C(18) | 106.8(6) | | N(14)-Ni(1)-N(1) ¹ | 84.6(2) | C(21)-N(20)-Ni(20) | 114.6(4) | N(14)-C(15)-C(16) | 107.7(5) | | N(10)-Ni(1)-N(1) | 92.8(2) | C(26) ² -N(20)-Ni(2) | 105.4(4) | N(10) ¹ -C(16)-C(15) | 108.3(5) | | N(14)-Ni(1)-N(1) | 95.4(2) | C(25)-N(24)-C(23) | 116.3(6) | N(20)-C(21)-C(27) | 111.5(6) | | $N(20)-Ni(2)-N(24)^2$ | 85.1(2) | C(25)-N(24)-Ni(2) | 105.1(4) | N(20)-C(21)-C(22) | 110.4(6) | | N(20)-Ni(2)-N(24) | 94.9(2) | C(23)-N(24)-Ni(2) | 123.4(4) | C(27)-C(21)-C(22) | 109.0(6) | | N(20)-Ni(2)-N(2) | 91.8(2) | N(1)-C(1)-S(1) | 176.7(7) | C(21)-C(22)-C(23) | 120.9(6) | | N(24)-Ni(2)-N(2) | 94.6(2) | N(2)-C(1)-S(2) | 177.6(7) | N(24)-C(23)-C(28) | 109.2(6) | | $N(20)-Ni(2)-N(2)^2$ | 88.2(2) | N(10)-C(11)-C(17) | 111.1(5) | N(24)-C(23)-C(29) | 111.7(6) | | $N(24)-N(2)-N(2)^2$ | 85.4(2) | N(10)-C(11)-C(12) | 109.8(5) | C(28)-C(23)-C(29) | 109.5(6) | | C(1)-N(1)-Ni(1) | 143.1(6) | C(17)-C(11)-C(12) | 109.9(6) | N(24)-C(23)-C(22) | 108.0(6) | | C(2)-N(2)-Ni(2) | 174.5(6) | C(11)-C(12)-C(13) | 119.7(6) | C(28)-C(23)-C(22) | 107.5(6) | | C(11)-N(10)-C(16) ¹ | 115.6(5) | N(14)-C(13)-C(19) | 111.0(6) | C(29)-C(23)-C(22) | 110.7(6) | | C(11)-N(10)-Ni(1) | 114.1(4) | N(14)-C(13)-C(12) | 107.9(5) | N(24)-C(25)-C(26) | 107.9(6) | | C(16) ¹ -N(10)-Ni(1) | 106.5(4) | C(19)-C(13)-C(12) | 111.8(6) | N(20) ² -C(26)-C(25) | 109.4(6) | | C(15)-N(14)-C(13) | 116.4(5) | | | | | ^a See Table 3. In the reference compound, one of the N atoms of the macrocycle is out of the plane of the other three, offering a *cis* position for the fifth and sixth coordinating atoms. This also leads to a larger diversity in Ni–N(CTH) bond lengths, e.g. from 2.077(5) to 2.169(6) Å. #### **Experimental** Synthesis and analyses. $[Cr(NCS)_6]K_3$ and $[Ni(CTH)](ClO_4)_2$ were prepared by literature methods.^{6,7} Crystals of $[Ni(CTH)(NCS)_2]$ were obtained by slow diffusion of a water solution of $[Cr(NCS)_6]K_3$ (0.3 mmol, 0.155 g) into a water solution of $[Ni(CTH)](ClO_4)_2$ (1 mmol, 0.54 g). The crystals were filtered off and air-dried. Calc. for $C_{18}H_{36}N_6NiS_2$: C, 47.1; H, 7.9; N, 18.3; Ni, 12.8; S, 14.0%. Anal. Found: C, 46.7; H, 8.3; N, 17.8; Ni, 12.9; S, 13.7%. Crystallography. A light-pink crystal of dimensions $0.15 \times 0.12 \times 0.10$ mm was selected for data collection at 193(2) K with a Rigaku AFC7S diffractometer using monochromatized Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). Unit-cell parameters were determined from a least-squares fit of the setting angles of 21 reflections with 20 in the range $7-20^{\circ}$. A total of 4113 reflections (3878 independent) were recorded in the range $5 < 20 < 53^{\circ}$. The intensities of three check reflections monitored every 200 reflections showed only a statistical variation, of $\pm 2\%$. The data were corrected for Lorentz and polarization effects and for absorption (0.63 < T < 1.00) using ψ -scan methods. The structure was solved by direct methods and refined on F^2 by a full-matrix least-squares technique. ¹⁰ In the final refinement, all non-H atoms were anisotropically refined and H atoms isotropically refined. All hydrogen atoms were placed in calculated positions. The displacement parameters of H-atoms were $1.5 \times$ that of the host atom. In the final refinement of 3865 reflections the data converged at R = 0.076 [$F > 4\sigma(F)$]. Crystal parameters and refinement results are summarized in Table 1, while atomic coordinates, bond lengths and angles are listed in Tables 2–4. ## References - Gatteschi, D., Kahn, O., Miller, J. S. and Palacio, F. Eds. Magnetic Molecular Materials, Kluwer Academic Publishers, Dordrecht 1991. - 2. Tait, A. M. and Busch, D. H. Inorg. Synth. 18 (1978) 1. - Lever, A. B. P., Walker, I. M., McCarthy, P. J., Mertes, K. B., Jircitano, A. and Sheldon, R. *Inorg. Chem.* 22 (1983) 2252. - Ito, T., Kato, M. and Ito, H. Bull. Chem. Soc. Jpn 57 (1984) 2641. - Colacio, E., Dominquez-Vera, J. M., Escuer, A., Kivekäs, R. and Romerosa, A. *Inorg. Chem. 33* (1994) 3914. - Gadet, V., Mallah, T., Castro, I. and Verdaguer, M. J. Am. Chem. Soc. 114 (1992) 9213. - Brauer, G. Quimica Inorganica Preparativa, Ed. Reverte, Barcelona 1958. - Texsan. Texray Version 1.6b. MSC, The Woodlands, TX 1993. - Sheldrick, G. M., SHELXTL-PC, Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, WI 1990. - Sheldrick, G. M., SHELXL (1995). J. Appl. Cryst. To be published. Received 24 April 1995.