Short Communication

Crystal Structure of [Ni(CTH)(NCS)₂] with Linearly and **Nonlinearly Coordinated Isothiocyanate Groups**

Enrique Colacio, a Jose M. Dominquez-Vera, Albert Escuer, Raikko Kivekäs, Enrique Colacio, Albert Escuer, Enrique Colacio, Alb Martti Klinga^c and Antonio Romerosa^d

^a Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain, ^bDepartment of Inorganic Chemistry, University of Barcelona, Diagonal 647, 08028 Barcelona, Spain, clnorganic Chemistry Laboratory, Box 55, FIN-00014 University of Helsinki, Finland and ^dDepartment of Inorganic Chemistry, University of Almería, 04071 Almería, Spain

> Colacio, E., Dominquez-Vera, J. M., Escuer, A., Kivekäs, R., Klinga, M. and Romerosa, A., 1996. Crystal Structure of [Ni(CTH)(NCS)₂] with Linearly and Nonlinearly Coordinated Isothiocyanate Groups. - Acta Chem. Scand. 50: 178 -180 © Acta Chemica Scandinavica 1996.

One of the main challenges in the field of magnetic molecular materials is the design and synthesis of molecularbased ferromagnets. A useful strategy for achieving such ferromagnets has been to build tridimensional (3D) polymetallic systems in which all the interactions between nearest neighbours are ferromagnetic. 1 A good example of this is the bimetallic Cr^{III}-Ni^{II} polymer reported by Verdaguer et al., in which the orthogonality of the magnetic orbitals centred on CrIII and NiII ions gives rise to ferromagnetic interaction.² In an attempt to prepare 3D heterobimetallic Ni-Cr compounds of this type, we have used the complexes [Cr(NCS)₆]K₃ as precursor and [Ni(CTH)](ClO₄)₂ with meso-CTH as counterpart (CTH = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazacyclotetradecane). The former contains six potential donor atoms for other metal ions, whereas in the latter the Ni^{II} ion has two empty axial coordination sites. However, when we allowed water solutions of [Cr(NCS)₆]K₃ and [Ni(CTH)](ClO₄)₂ to react by slow diffusion, we obtained pink crystals of a compound with empirical formula [Ni(CTH)(NCS)₂]. This paper deals with the synthesis and crystal structure of this new complex, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazacyclo-tetradecane-N,N',N",N"'-trans-bis(isothiocyanato-N)nickel(III).

Results and discussion

The structure contains two discrete, non-equivalent monomeric $[Ni(C_{16}H_{36}N_4)(NCS)_2]$ units (Fig. 1). In both units the metal ion occupies the inversion centre and has a distorted octahedral NiN₆ environment, with Ni-N distances 2.081(6)-2.139(6) Å (Fig. 2). Four N atoms of the macrocyclic CTH ligands are chelated to the nickel(II)

Fig. 1. Structural view and numbering scheme for [Ni(CTH)(NCS)₂].

atom in a planar NiN4 arrangement, and the octahedral coordination is completed by the N atoms of two NCS ions in trans position. The two [Ni(CTH)]²⁺ moieties are closely similar: the corresponding Ni-N distances and N-Ni-N angles are almost identical, bond lengths and

Fig. 2.

Table 1. Crystal data and structure determination summary for [Ni(CTH)(NCS)₂].

10. [1.11/0.11/1.11.01/2.]	
Compound	[Ni(CTH)(NCS) ₂]
Formula	C ₁₈ H ₃₆ N ₆ NiS ₂
Formula mass	459.36
Space group	P 1 (No. 2)
Wavelength, (MoKα)/Å	0.71073
Crystal system	Triclinic
Temperature/K	193(2)
a/Å	8.049(2)
b/Å	9.134(2)
c/Å	15.488(3)
α/°	94.22(3)
R/°	97.53(3)
γ/°	92.97(3)
γ/° V /ų	1123.6(4)
Z	2
F(000)	492
$D_{\rm c}/{\rm g~cm}^{-3}$	1.358
μ/cm ⁻¹	10.65
Crystal size/mm	0.15×0.12×0.10
Scan mode	$\omega/2\theta$
$\theta_{\sf max}/^{\circ}$	26.50
Weights	$[\sigma^2(F_0^2) + (0.0991P)^2]^{-1}$
	where $P = (F_0^2 + 2F_0^2)/3$
No. of independent reflections	3878
No. of observed reflections	2279 $[F > 4\sigma(F)]$
No. of variables	250
R	7.59
wR	17.49

angles in the CTH ligands are not markedly different, the five-membered chelate rings assume a *gauche* conformation and the six-membered rings adopt a *chair* conformation.

The two independent isothiocyanate ions are practically linear, and bond lengths of the ions do not differ significantly. However, there is a difference in the axial orientation of the *trans*-isothiocyanato-N ions. In unit 2 the NCS-Ni-NCS arrangement is almost linear and perpendicular to the NiN₄ plane, with an Ni(2)-N(2)-C(2) angle of 174.5(6)°, whereas in unit 1 the Ni(1)-N(1)-C(1) angle is 143.1(6)° and the whole NCS is bent away from the axial position, thus avoiding close contact with the surrounding molecules. There are no contact distances shorter than 3.5 Å between NCS ions and the non-H atoms of neighbouring molecules. Thus NCS ions do not participate in intermolecular hydrogen-bond formation, and the monomers are bound together only by van der Waals forces.

A difference in inclination of the two NCS groups has been observed previously in this type of complex. The complex [Ni(as-Et₂en)₂(NCS)₂]³ (where as-Et₂en is N,N-diethylethylendiamine), which also contains two non-equivalent monomeric units, exhibits Ni-N-CS angles of 162.8(2) and 171.3(3)°. Likewise, in [Ni(L³)(NCS)₂]⁴ (with L³ standing for 1,4,8,11-tetraazacyclotetradecane), the inclination of the NCS groups ranges from 156 to 168° for the four crystallographically independent molecules. In these cases, the difference in the Ni-N-CS angles may be a consequence of intermolecular interactions. However, in our case, where there are no close

Table 2. Positional parameters ($\times 10^4$) and equivalent isotropic thermal parameters (in $\mathring{A}^2 \times 10^3$) for [Ni(CTH) (NCS)₂].

Atom	x/a	y/b	z/c	<i>U</i> (eq)
Ni(1)	5000	5000	0	26(1)
Ni(2)	5000	10000	5000	30(1)
S(1)	1985(3)	8000(3)	- 1843(2)	57(1)
S(2)	7149(3)	6117(2)	3167(1)	45(1)
N(1)	2869(8)	5798(7)	-756(4)	40(2)
N(2)	6095(8)	8375(7)	4243(4)	39(2)
N(10)	4110(7)	5557(6)	1176(4)	33(1)
N(14)	4043(7)	2788(6)	- 111(4)	28(1)
N(20)	3235(7)	10368(7)	3944(4)	35(1)
N(24)	3422(7)	8479(7)	5521(4)	36(1)
C(1)	2467(9)	6680(8)	- 1215(5)	35(2)
C(2)	6562(9)	7457(8)	3798(5)	32(2)
C(11)	2476(8)	4810(8)	1260(5)	33(2)
C(12)	2611(9)	3152(8)	1181(4)	33(2)
C(13)	2506(9)	2331(7)	276(5)	30(2)
C(15)	4112(9)	2218(7)	- 1021(5)	34(2)
C(16)	5817(7)	2818(6)	- 1286(4)	37(2)
C(17)	1898(7)	5286(6)	2127(4)	56(2)
C(18)	2526(10)	680(9)	417(5)	48(2)
C(19)	917(9)	2635(9)	-315(5)	41(2)
C(21)	2160(9)	9058(8)	3571(4)	33(2)
C(22)	1176(9)	8451(8)	4265(5)	38(2)
C(23)	2026(9)	7522(8)	4970(5)	36(2)
C(25)	4562(9)	7721(8)	6157(5)	41(2)
C(26)	5803(10)	8875(9)	6669(5)	49(2)
C(27)	926(10)	9406(9)	2791(5)	46(2)
C(28)	715(9)	7085(9)	5538(5)	46(2)
C(29)	2683(10)	6146(8)	4552(5)	44(2)

contacts between molecules, the source of the difference is not apparent.

In the title compound with *meso*-CTH and in [Cu-(ClO₄)(μ -L)Ni(CTH)](ClO₄)·H₂O with *rac*-CTH (H₂L is α, ω -bis((1,3-dimethyl-5-nitrosouracil-6-yl)amino)propane),⁵ the macrocycle acts as a tetradentate ligand in an octahedral environment; however, the geometry of the ligand differs in the two compounds. As mentioned above, in the title compound the four coordinating N atoms of CTH in 1 and 2 are exactly in the plane owing to symmetry, leading to a *trans* occupation of thiocyanates.

Table 3. Bond lengths (in Å) for [Ni(CTH)(NCS)₂].^a

Ni(1)-N(10)	2.082(5)	N(20)-C(26)2	1.487(9)
Ni(1)-N(14)	2.111(5)	N(24)-C(25)	1.490(9)
Ni(1)-N(1)	2.139(6)	N(24)-C(23)	1.514(9)
Ni(2)-N(20)	2.081(6)	C(11)-C(17)	1.519(8)
Ni(2)-N(24)	2.109(6)	C(11)-C(12)	1.521(9)
Ni(2)N(2)	2.123(6)	C(12)-C(13)	1.530(9)
S(1)-C(1)	1.635(8)	C(13)-C(19)	1.523(10)
S(2)-C(2)	1.637(8)	C(13)-C(18)	1.539(9)
N(1)-C(1)	1.145(9)	C(15)-C(16)	1.567(8)
N(2)-C(2)	1.156(9)	C(21)-C(27)	1.523(10)
N(10)-C(11)	1.475(9)	C(21)-C(22)	1.534(10)
$N(10)-C(16)^{1}$	1.479(8)	C(22)-C(23)	1.544(10)
N(14)-C(15)	1.474(8)	C(23)-C(28)	1.516(10)
N(14)-C(13)	1.498(8)	C(23)-C(29)	1.522(10)
N(20)-C(21)	1.475(9)	C(25)-C(26)	1.516(10)

^a Symmetry transformations used to generate equivalent atoms: $^{1}-x+1$, -y+1, -z; $^{2}-x+1$, -y+2, -z+1.

Table 4. Bond angles (in °) for [Ni(CTH)(NCS)₂].^a

N(10)-Ni(1)-N(14)	95.2(2)	C(15)-N(14)-Ni(1)	106.4(4)	N(14)-C(13)-C(18)	109.0(5)
N(10)-Ni(1)-N(14) ¹	84.8(2)	C(13)-N(14)-Ni(1)	121.8(4)	C(19)-C(13)-C(18)	110.1(6)
N(10)–Ni(1)–N(1) ¹	87.2(2)	$C(21)-N(20)-C(26)^2$	116.3(6)	C(12)-C(13)-C(18)	106.8(6)
N(14)-Ni(1)-N(1) ¹	84.6(2)	C(21)-N(20)-Ni(20)	114.6(4)	N(14)-C(15)-C(16)	107.7(5)
N(10)-Ni(1)-N(1)	92.8(2)	C(26) ² -N(20)-Ni(2)	105.4(4)	N(10) ¹ -C(16)-C(15)	108.3(5)
N(14)-Ni(1)-N(1)	95.4(2)	C(25)-N(24)-C(23)	116.3(6)	N(20)-C(21)-C(27)	111.5(6)
$N(20)-Ni(2)-N(24)^2$	85.1(2)	C(25)-N(24)-Ni(2)	105.1(4)	N(20)-C(21)-C(22)	110.4(6)
N(20)-Ni(2)-N(24)	94.9(2)	C(23)-N(24)-Ni(2)	123.4(4)	C(27)-C(21)-C(22)	109.0(6)
N(20)-Ni(2)-N(2)	91.8(2)	N(1)-C(1)-S(1)	176.7(7)	C(21)-C(22)-C(23)	120.9(6)
N(24)-Ni(2)-N(2)	94.6(2)	N(2)-C(1)-S(2)	177.6(7)	N(24)-C(23)-C(28)	109.2(6)
$N(20)-Ni(2)-N(2)^2$	88.2(2)	N(10)-C(11)-C(17)	111.1(5)	N(24)-C(23)-C(29)	111.7(6)
$N(24)-N(2)-N(2)^2$	85.4(2)	N(10)-C(11)-C(12)	109.8(5)	C(28)-C(23)-C(29)	109.5(6)
C(1)-N(1)-Ni(1)	143.1(6)	C(17)-C(11)-C(12)	109.9(6)	N(24)-C(23)-C(22)	108.0(6)
C(2)-N(2)-Ni(2)	174.5(6)	C(11)-C(12)-C(13)	119.7(6)	C(28)-C(23)-C(22)	107.5(6)
C(11)-N(10)-C(16) ¹	115.6(5)	N(14)-C(13)-C(19)	111.0(6)	C(29)-C(23)-C(22)	110.7(6)
C(11)-N(10)-Ni(1)	114.1(4)	N(14)-C(13)-C(12)	107.9(5)	N(24)-C(25)-C(26)	107.9(6)
C(16) ¹ -N(10)-Ni(1)	106.5(4)	C(19)-C(13)-C(12)	111.8(6)	N(20) ² -C(26)-C(25)	109.4(6)
C(15)-N(14)-C(13)	116.4(5)				

^a See Table 3.

In the reference compound, one of the N atoms of the macrocycle is out of the plane of the other three, offering a *cis* position for the fifth and sixth coordinating atoms. This also leads to a larger diversity in Ni–N(CTH) bond lengths, e.g. from 2.077(5) to 2.169(6) Å.

Experimental

Synthesis and analyses. $[Cr(NCS)_6]K_3$ and $[Ni(CTH)](ClO_4)_2$ were prepared by literature methods.^{6,7} Crystals of $[Ni(CTH)(NCS)_2]$ were obtained by slow diffusion of a water solution of $[Cr(NCS)_6]K_3$ (0.3 mmol, 0.155 g) into a water solution of $[Ni(CTH)](ClO_4)_2$ (1 mmol, 0.54 g). The crystals were filtered off and air-dried. Calc. for $C_{18}H_{36}N_6NiS_2$: C, 47.1; H, 7.9; N, 18.3; Ni, 12.8; S, 14.0%. Anal. Found: C, 46.7; H, 8.3; N, 17.8; Ni, 12.9; S, 13.7%.

Crystallography. A light-pink crystal of dimensions $0.15 \times 0.12 \times 0.10$ mm was selected for data collection at 193(2) K with a Rigaku AFC7S diffractometer using monochromatized Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). Unit-cell parameters were determined from a least-squares fit of the setting angles of 21 reflections with 20 in the range $7-20^{\circ}$. A total of 4113 reflections (3878 independent) were recorded in the range $5 < 20 < 53^{\circ}$. The intensities of three check reflections monitored every 200 reflections showed only a statistical variation, of $\pm 2\%$. The data were corrected for Lorentz and polarization effects and for absorption (0.63 < T < 1.00) using ψ -scan methods. The structure was solved by direct methods

and refined on F^2 by a full-matrix least-squares technique. ¹⁰ In the final refinement, all non-H atoms were anisotropically refined and H atoms isotropically refined. All hydrogen atoms were placed in calculated positions. The displacement parameters of H-atoms were $1.5 \times$ that of the host atom. In the final refinement of 3865 reflections the data converged at R = 0.076 [$F > 4\sigma(F)$]. Crystal parameters and refinement results are summarized in Table 1, while atomic coordinates, bond lengths and angles are listed in Tables 2–4.

References

- Gatteschi, D., Kahn, O., Miller, J. S. and Palacio, F. Eds. Magnetic Molecular Materials, Kluwer Academic Publishers, Dordrecht 1991.
- 2. Tait, A. M. and Busch, D. H. Inorg. Synth. 18 (1978) 1.
- Lever, A. B. P., Walker, I. M., McCarthy, P. J., Mertes, K. B., Jircitano, A. and Sheldon, R. *Inorg. Chem.* 22 (1983) 2252.
- Ito, T., Kato, M. and Ito, H. Bull. Chem. Soc. Jpn 57 (1984) 2641.
- Colacio, E., Dominquez-Vera, J. M., Escuer, A., Kivekäs, R. and Romerosa, A. *Inorg. Chem. 33* (1994) 3914.
- Gadet, V., Mallah, T., Castro, I. and Verdaguer, M. J. Am. Chem. Soc. 114 (1992) 9213.
- Brauer, G. Quimica Inorganica Preparativa, Ed. Reverte, Barcelona 1958.
- Texsan. Texray Version 1.6b. MSC, The Woodlands, TX 1993.
- Sheldrick, G. M., SHELXTL-PC, Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, WI 1990.
- Sheldrick, G. M., SHELXL (1995). J. Appl. Cryst. To be published.

Received 24 April 1995.